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\ SECTION I

INTRODUCTION

4
The digitalization of flight control systems has been of increasing

interest to the Air Force. One of the problems confronting the designer
is the real-time implementation of advanced control algorithms within
Epg‘ggﬁggigslgpgl capability of the on-board comPpggf{‘:Although digital
/7computer'technology continues to advance significantly, new and expanded
| software requirements for such functions as navigation, display and
control manage to keep pace with improvements in computational capa-
bility. As a rule, only a small fraction of the CPU frame time is
allocated for control law computation, Hence, from the standpoint of
implementation, the sampling rate should be sufficiently low in order
to allow time for computation and for the computer to be time-shared.
But lower limits of the sampling rate are determined by factors such as
excessive ratcheting and jittering in the time response, errors due to
measurement noise and sensitivity to plant parameter uncertainty and
disturbances. The control system designer is then faced yith the task
of optimizing the performance of the digital control system at a given
\rate of sampling.
\\““‘In converting a continuous-data (analog) controller into a digital
controller, ad hoc approaches such as bilinear transform and prewarped
Tustin transform techniques have typically been used. These methods
have the advantage of being straightforward and easy to use, and they
are intuitively appealing. But the performance of a system digitalized
by these approaches resembles the performance of the baseline (continu-
ous) system only when the sampling frequency is relatively high,
because the dynamics of the plant and the feedback structure of the

system are not taken into consideration. PSS
N

Four years ago Rattan and the author of this report presented a
method [1] using a complex-curve fitting technique to synthesize the
digital controller so that the frequency response of the digitalized
system matches that of the original continuous model with a least-square

fit. This method was recently applied to a mathematical model of the

PP
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longitudinal flight control of the YF~16 fighter aircraft at an alti-
tude of 30,000 ft. and Mach 0.6. Results [2] better than that of Tustin
transform ~pproach have been obtained, especially for lower sampling
frequencies. However, this method does not take the time-domain perfor-
mances into consideration; and only the magnitude plots of the frequency
responses are matched, without regard to the phase plot. Moreover, the
comparison between the frequency response of a continuous system and the
frequency response of a digital control system becomes meaningless (see
Appendix D) as the signal frequency approaches the folding frequency
(one half of the sampling frequency). To compensate for these short-—
comings, the state-variable design techniques in the time-domain should
be developed.

In a previous study, the author and his associlate showed that [3]
by using z-transformation technique, a digital controller can always be
synthesized so that the output of the digitalized system matches the
output of the continuous model at all sampling instants, under the
stimulation of the same input.

In this study, an attempt is made to match the continuous state
trajectory of the digital control system with that of its analog
(continuous-data) model., Matching.the state trajectories instead of
the output responses assures that the performances of the internal
variables of the plant, as well as the output variable, are preserved
in the digitalization. It should also be emphasized that the matching
is specified over the entire continuous time axis, not just at discrete
sampling instants, and is quantified by a minimum integral squared
error. The choice of this performance criterion is motivated by the
fact that if the state trajectories of two linear dynamical systems
match, then frequency responses of the two systems will also match, as
seen by Laplace~transforming the state equations,

The mathematical tool used in this research is an extended maximum
principle of the Pontryagin type, which enables one to synthesize a
"staircase" type of optimal control signals, such as the output signal
of a zero-order hold associated with a digital controller. The extended

maximum principle was initiated by Chang [4] and further developed by




the author and his co-workers [5-9]. Though not widely used in the
technical literature, it is a very effective tool for obtaining the
discrete time optimal control policy for an integral performance index,
with a minimum amount of mathematical manipulations. It is shown in
the sequel (Section VI) that the same result can be derived from the
discrete maximum principle and an equivalent discrete~time performance

index but through a far more cumbersome procedure.

This research is a continuation of the effort initiated in the 1981
Summer Faculty Research Program sponsored by the Air Force Office of
Scientific Research through the Southeastern Center for Electrical
Engineering Education, under contract F49620-79-C-0038. In order for
this report to be self contained, the mathematical formulation of the
problem will be repeated (Section II). The optimal strategy and the
digital controller are rederived for the general case (Sections III,
IV). Computational verification and performance evaluations and com-
parisons are presented in Section V, where computational difficulties

that are special to this method are discussed. Conclusions and recom-

mendations are given in Section VII.
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SECTION 11

FORMULATION OF THE DESIGN PROBLEM

Consider a continuous output tracking system (Fig. 1) that has
satisfactory (or ideal) performances. The state and output equations

of the plant are given by

x,(t) = Ax_(t) + bu (t) (1)

y () = ex, (£) + du (1) €y

The state and output equations of the controller are given by

x.(t) Ax (t) +be (t) 3)

u () = c.x (t) +de (t) (%)

where §a(t) and Ec(t) are n and n, dimensional vectors, respectively,
and um(t), em(t), ym(t) and r(t) are scalar functions. The dimensions

of the coefficient matrices are commensurate with the vectors with

which they associate. The design objective is to replace the control- !
ler Gc(s) by a digital controller D(z) such that the state trajectory f
of the digitalized system matches that of the continuous model as
closely as possible. The digital control system is represented by

Fig. 2, where G(s) is the same plant as in the continuous model, and
D(z) is to be synthesized in such a way that when r(t) is a unit-step

function, the performance index

3or 3 ] UE® -5, 01 - 5o

+ Blu(e) - u (1%} ae 5)

attains its minimum, where

T me— - . -




xc(t) 50(”
r(t) e (t) u (t) y (t)
m m m
s Gc(s) ———~ G (s) ——
- continuous plant |
controller
Fig.! Continuous System Model |
X(t)
r(t) e(t) e(kT) ulkT) u(t) y(t)
——?—/——— D(z) [ —= G (s) == G (s) -
+ T T h
- digital Zero-order plant
controller hold

Fig. 2 The Digitalized System
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Note that the performance index is an integral, not a discrete sum,
Therefore an attempt is made to match the trajectories over the con-
tinuyous time axis, not just at the sampling instants. The state and
output equations of the plant in the digital control system are

x(t) = Ax(t) + bu(kT) (7
y(t) = Sx(t) + du(kT) (8)

for kKT < t £ (k + 1)T, on account of the zero-order hold used in the
digital control system (Fig. 2).

e, i

e - TR
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SECTION III

THE OPTIMAL CONTROL SEQUENCE

(A) The Extended Maximum Principle

An extended version of the maximum principle of Pontryagin will
be used to find the optimal control sequence u(kT), k = 0,1,2,000,
which minimizes the performance index (5). The error sequence e(kT)
can be expressed in terms of u(kT), and the digital controller D(z) can
be determined by

D(z) = (9

where U(z) is the z-transform of u(kT) and E(z) is the z-transform of
e(kT).

The original Pontryagin's Maximum Principle cannot be applied to
this problem in which the control function must be sampled and held,

i.e.,

u(t) = u(kT) , kT <t < (k+1)T ‘ (10)

The derivation of Pontryagin's maximum principle is based on the
assumption that piece-by-piece patchwork of admissible control func-—
tions is again admissible. This condition is not satisfied by the
output of a zero-order hold following a constant rate sampler, if the
point of patching is selected at an instant other than the sampling
instants. However, the extended maximum principle may be applied to
the case where the control inputs are outputs of zero-order holds
[5-9]. The following derivation follows from Reference [7]. The
Hamiltonian function H is formed from the adjoint vector p(t), the
state derivative é(t) and the integrand of the performance index as

H(x(t),p(t),u(t)) = p'(t)x(t)

- x(e) - x (O 1"ax() - x (O] + Blu(e) - u (1} QD)

‘ — ' vj
- - _
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where the prime denotes transpose. Substituting (7) into (11) gives
H(x(t),p(t),u(t)) = p'(t)Ax(t) + p'bu(t)

- Lz - x (01"l - x (O] + Blu®) - w (17 a2

The adjoint vector p(t) is given by

B(Y) = = grrry HOE(E),R(E),u(6)) (13)

Substituting (12) into (13) gives the adjoint system

p(t) = =A'p(t) + Qlx(t) - x ()] (14)

The necessary condition for the control and trajectory to be optimum is
that the first variation of the integral of the Hamiltonian is zero,

icel’

1lim l f (H(x,p,u+d_u) - H(x,p,u)] dt = O (15)
0 5 0 €

where the variable t in the Hamiltonian has been suppressed, and

GEu(t) = eAu(kT) , kT<t<(k+1)T (16)

where Au(kT) is an arbitrary finite variation of u(kT). Substituting
(12) and (16) into (15) gives

® (k)T
[p't - 8(u(kT) - u (£))]8u(kT) de = 0  (17)
k=0 kT

Since Au(kT) is an arbitrary constant which may be set independently for
each k, (17) implies




(k+1)T
[p't - B(u(kT) - u (t))] dt = 0 (18)
kT
From (18) the optimal control u(kT) is found to be
! 1 (k+1)T
uk) = == f [p'b + Bu_(t)] dt (19)
BT - - m
kT
The difficulty in the application of the maximum principle is the two-
point boundary value problem. In this formulation, the two-point
boundary value problem is as follows: For any i, if xi(O) is given,
then pi(O) is unspecified (remains to be determined from (7), (19) and
(14)). 1If xi(O) is unspecified (remains to be determined by the
maximum principle), then pi(O) = ), The same rule applies to xi(w) and
Py (=).
(B) Determination of the Optimal Control Sequence
In order to compute the optimal control sequence u(kT) from (19),
the solution p(t) of (14) and an explicit expression of um(t) must be
found first,
Let the augmented state vector of the model be
x ()
t) = 20
) x_ (t) 0
=c
It follows from Appendix A that
x(t) = Ax (t) +Db r(t) (21)
um(t) - cm:_cm(f:) + dmr(t) (22)
where

P e T TEs




0l

and

(23)

(24)

(25)

(26)

Define Qm to be the n.x(n-bnc) matrix obtained by augmenting nc columns

of zeros to Q, i.e.,

Then by definition

o = I 0

ax, (0 = Qx (t)

Assume that r(t) is a step function, i.e.,

It is shown in Appendix B that, for kT < t g (k + 1)T,

a t20
r(t) = {

0 t <0

10

(27)

(28)

(29)




x(t) = o(t-kT)x(kT) + ¢°(t-kT)bu(kT) (30)
x(8) = & (t-kD)x (KT) + ¢>(¢-kT)b a (31)

and
p(t) = ¥(t-kT)p(kT) + F(t-kT)x(kT) + F°(t-kT)bu(kT)
- F_(t=kD)x_(KT) = F:(c-kr)l_:m a (32)
where

o(r) = €At (33)
t

%ty = [ () dr (34)
0
Amt

¢m(t) = ¢ . (3.5)

s t

¢ (t) = {) ¢ (1) dr (36)

W) = A't (37)
t

F(t) = [ ¥(t-1)Q®(t) dt = ¥(t) *xQo(t) (38)
0

s t

F(t) = [ F(1) dt (39)
0
t

F (t) = jo ¥(e-1)Q 0 (1) dT = ¥(t) Q& (t)  (40)

s t

F (t) = {)Fm(r) dt (41)

y
11
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Substituting (31) and (32) into (19) and solving for u(kT) yields
u(kT) = L {p'e*(mpm + bF(DE(KD)
BT - b'F (T)b
b
+ [8c,¢%(T) - B'Fo(T)]x (kT)
- 88 S8
+ lac e “(Db + 8Td =~ b'F (Db _la} (42)
where .
. T
¥(T) = f()lt'(t) dt (43)
T S
(T = [ F(t) dt (44)
0
S8 T S
F (D) = jo F_(t) dt (45)
and
88 T S
¢ (T = {) ¢_(t) dt (46)

Equation (42) may be used to compute u(kT) iteratively after the two-
point boundary problem is solved. In this research, (9) is used to
synthesize the digital controller transfer function D(z). The two-
point boundary problem still arises and will be treated in the next

section,

12




A — — remermo— _—2’___1__ , ,

SECTION IV

THE DIGITAL CONTROLLER

(A) z-Transform of the Optimal Control Sequence

In order to determine U(z) for use in Eq. (9), P(z), X(2z) and
§m(z) must be determined first. Setting t = (k + 1)T in (30) - (32)

gives
x[(kH)T) = &(T)x(KT) + 6°(T)bu(kT) (47)
x ((#DT] = 0 (Dx (KT) + 02(Db a (48)
pIH)T] = ¥(Dp(kD) + F(Dx(kD) - F (Tx (k1)

+ F(Dbu(kT) - Fo(Dba (49)

Taking z-transformation of (47) - (49) gives, respectively,

3(2) [zx(0) + 0%(T)bU(2)] (50)

X(2)

034

8 (2) [z:_cmw) + ¢3(Db_ ?-—1] (51)

>3
~
N
~
[ ]

P(z) = ¥(2) Eg(O) + F(DX(2) - F_ (DX (2)

S -3 oz
+ F(DbU(z) - FX(Db ;_—1] (52)
where
o(z) = [2I ~ o(T)]7L (53)
82 = [z1-0¢ (D17} (54)
¥(z) = [zI - ¥(D)]7L (55)

13




Substituting (50) and (51) into Eq. (52) gives

B(z) = ¥(2){zp(0) + F(D&(2)zx(0) - F (D} (2)zx (0)

~ 8 s az
- [Fm(T)om(z)‘pm(T) + Fm(T)]]-’m 1

+ [R5 + F(D1bU)} (56)

Substituting (50), (51) and (56) into the z-transform of (42), and
solving for U(z) yields

uz) = gr_—;mip'uz)zz_«m + 'K (2)2p(0)

+ (82 00 (ME (2) - b'K (2))zx (0)

+ [85_(03(D3_(2)02(T) + o°°(T)b - b'H ()b + 614 1 5} (57
where
K (2) = [¥(D¥@F (D + FADIE (2) (58)
K(z) = [¥3(D¥DFD + F(D1e(2) (59)
Ky(z) = ¥¥(D¥(2) (60)
H(z) = Fo(D) + Ko(z)l'-‘:('l‘) + K _(2)03(T) (61)
H(z) = F°(D + Ky(2)F(D + K(2)e°(D) (62)

(B) z=-Transform of the Error Sequence

From the block diagram of Fig. 2 and Eqs. (8) and (30) we may

write




e(t) = r(t) -y(t) = a-y(t)

(63)
y(t) = co(t-kT)x(kT) + [co®(t-kT)b + d]u(kT) (64)
for kT < t £ (k + 1)T. Therefore
e[(#)T] = a - cO(Dx(kT) - [c0°(T)b + dJu(kT) (65)
Taking z-transform of the above equation gives
Ez) = e(d) + =% - 2TaDX=) - 2 [Ge%(Db + Aluz)  (66)
where e(0") 1s found from (63) and (8) as
e(0h = a - x(0") - au(oh (67
Substituting (67) and (50) into (66) gives
Bz) = & - au(0h) - TII + o(D)(2)1x(0")
- 2R + o(D3)(Db + 41U (68)
From the definition of #(z) given in (53), it follows that
I+ 6Nz = 2z8(2) (69)

Moreover, for most control systems the control signal does not supply
power to the output. Hence d = 0 and E(z) of (68) may be written as

Ez) = 2 - S28(2)x(0h) - 33(2)e%(Mbu(2) (70)

By virtue of the relationship given in (9), the z-transfer function of

the digital controller may now be written, provided that the initial
conditions x(0), Em(O) and p(0) are known,

15




(c) The z-Transfer Function of the Digital Controller

In the model-following design, the initial state zm(O) of the model
may be taken to be zero. But if 5(0) is given, the 3(0) cannot be
arbitrarily specified. The maximum principle requires that 2(0) be such
that Eqs. (7), (14) and (19) yield an optimal control sequence that
drives the system from the given §(O) to a prespecified final state
E(“)’ or results in p(») = 0 if the final state is unspecified (free).
Numerical determination of E(O) for given x(«) or p(=) is virtually
impossible for systems requiring a large number of sampling periods to
run, because either matrix A or -A' has eigenvalues in the unstable
region. On the other hand, if x(0) is unspecified, p(0) must be set
equal to zero. But then x(0) is determined by Eqs. (7), (14) and (19)
and the final condition, which is either at a given value of x(») or at 1
p(«) = 0. Again, numerical determination of x(0) is impractical for

systems requiring a large number of sampling periods to run.

For the system under consideration, the state trajectory of the

continuous model is assumed to start from §m(0) = 0, Let x(0), the
initial state of the plant of the digital control system, be unspeci-
fied, Then p(0) = 0. However, since the minimization of the perfor-
mance index given in (5) means the continuous matching of x(t) with
Ea(t) over an infinitely long period of time, it is reasonable to con-
jectyre that §(t) starts at the same point as §a(t), or very close to
it, provided that the sampling frequency is considerably higher than the
natural frequency of the control system. Herce the initial condition

may be chosen as

§m(0) = 0 (71)
x(0) = 0 (72)
p(0) = 0 (73)

Substituting these conditions into Eqs. (57) and (70), and using the
resulting expressions in the right-hand side of (9), we obtain




1 - E(2)

- ]
D(z) U(z) —cé(2)¢ (Db

BT - b'H(2)b
Yo s T s ss (74)
Be [¢_(T)o (2)¢ (T) + ¢ “(T)]b - b'H (2)b + BTd

It should also be recognized that

l_e-Ts
]

ce(2)0°(Tb +d = z-transform of G(s) (75)

For B = 0, the digital controller is obtained from (74) as

1

D(z) (76)

Erﬂ(z)k' IR s
‘S-rm-r - ¢cd(2)¢ (T)E
m ~-m

Note that Eq. (19) cannot be used to find u(kT) for B = 0. But Eq. (18)
becomes
(k+1)T

p'bdt =0 (77)
kT

Since p depends on u(kT), (77) can be used to derive the optimal control
sequence, This approach was taken in the previous project [10] and the

digital controller of (76) was obtained.

(D) The Closed-Loop Transfer Function

-Ts
Let E;E(z) denote the z-transform of +-% G(s), i.e.,
GG(2) = Ti(2)0°(Db (78)
Let
b ()b
S YO 7
17




The z-transfer function of the closed-loop system of Fig. 2 is given by

Y(z) _ D(z)GhG(z) 80)
RE) 1+ D)6 62
If the digital controller of (76) is used, D(z) may be written as
G (2)
D(z) = 2 (81)
1 - Gm(z)GhG(z)
Substituting (81) into (80) yields
b'H (z)b
() _ S O(z) = R WM&
R(z) Gm(z)GhG(z) BH(Z)b GhG(z) (82)

Thus the optimal model-following design of digital controller can be
achieved by the Guillemin-Truxal approach [11] which selects a digital
controller transfer function algebraically so that the closed-loop z-
transfer function is the product of the z-transfer function of the plant

" with a zero-order hold and a correction factor Gm(z) given by (79).
It is readily observed from (58) - (62) that

Al
(1) Poles of Hm(z) are eigenvalues of ¢ AT and sAmT,

<A
(2) Poles of H(z) are eigenvalues of ¢ AT and eAT.

Since the poles of E;E(z) are eigenvalues of EAT, what the multiplication
factor Gm(z) in (82) actually does is, among other things, to replace the
poles of GhG(z) by z-plane poles of the continuous model with samplers
connected to in input and the output. Thus the closed-loop digitalized
system will have poles of the sampled continuous model, which are eigen-
values of eAmT.

The stability conditions of the digitalized system is given in [12].

The system is easily stabilized if all diagonal elements of Q are positive.

It is also observed from (82) that if the closed-loop system is stable,
then any zeros of b'H(z)b outside the unit circle must be cancelled by

18




some zeros of hfﬂm(z)hm. Theoretically, zeros of b'H(z)b outside the
unit circle may be cancelled by some zeros of GhG(z) but such a system is !

not realizable.

(E) Controller In the Feedback Path

When the controller is in the feedback path, as in Fig. 3 and Fig. 4,
Formulas (74) and (76) no longer apply and should be rederived. 1In this
case, the system equations (1) - (4) and (7) - (8) are replaced by

X, (8) = Ax (t) +be (t) (83)
{ Tp(t) = © x,(6) +d e (8) (84)
k(1) = A x (t) +b y (¢) (85)
{ v () = <, x (t) +4d_ y (v) (86)
and
x(t) = A x(t) + b e(kT) (87)
{ y(t) = ¢ x(t) + d e(kT) ‘ (88)

respectively. The derivation follows a similar pattern as that of (74)
and (76), and will not be repeated here. The result for the case of

B = 0 is given as follows:

- V(z)
D, (2 = 3(z)
[1 - t',"Hﬂl(z)l)‘m] z
. b'H(z)D | z - 1
- (89)
PRSIy g PR @b,
b'F5(T)b d¥leo@e Db +2) FuEp 7 -1
p| Again, for d = 0,
19
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b' (H(z)b - H (2)b)]

D.(z) =

1 (90)

[c® (2)0°(e)bl (b'H_(2)b ]

where H(z), Hm(z), #(z), and ¢2(T) are again given by (62), (61), (53),
and (34), respectively, but Am and gm are now given by:

bd ¢ -be
A - C C
1+ dd 1+dd_
A = _ _ (91)
bec b de
C A -~ - C
1+ dd c 1+
C Cc
—— nad
[ » ]
1+ dd
[od
b = (92)
» b d
C
1+dch

which are different from their previous definitions of (23) and (24).

It is interesting to see that for the control system of Fig. 4 with
a digital controller given by (90), the closed-loop transfer function is
again given by (82).

Careful examination of (90), in view of (58) - (62), shows that the
digital controller Dl(z) is not realizable, namely, the numerator poly-
nomial of Dl(z) is one degree higher than that of the denominator. To
remedy for this, the digitalized system can be implemented as in Fig. 5,
which can be derived as follows. First, V(z) of Fig. 4 is found to be

Dby |
v(z) - 1 - hlu(z)k z - 1 (93)
In view of (58) - (62), the initial value v(0) is found to be
b'FE% ()b
v(o) = By = 1 - 22|, (94)
# L'F(T)B

21




(t) (t
r y(t)

—i———ZOH ———a={ G (s) —
+

,_____-___
< )
)
g

-— - - o o G an -l

Fig.5 Realization of The Feedback Digital Controller D|(z)




B e

Thus, when r(t) is a step function of magnitude a,

v(z) - Yz s
z-
Dz(z) = Y(2)

1 S8 .
L'ES(Mp. b'H(2)D

. -1
b'F(T)b ~ b'H (2)b
- = R (95)
cd(2)$%(T)b

The digital controller Dz(z) of (95) is realizable, on account of (53) -
(55) and (58) - (62).
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SECTION V

COMPUTATIONAL VERIFICATION

Attempts have been made to verify the end results through the
numerical computations of the transfer functions of the digital con-
trollers and the evaluations of the performanges for three examples.

For the two lower order systems, excellent time responses of the overall
closed~loop digital control systems and satisfactory frequency responses
were obtained. The other example was the inner loop of the longitudinal
control of YF-16 fighter aircraft at 30,000 ft altitude at Mach 0.6.
Limited by the capability of the available computer programs, the re-
sult for the last example was unsatisfactory, hence not presented. The

computational difficulties and recommendations will be discussed later.

In comparing the frequency responses for the following examples,

the expression

Y(;jwf) ) D(z)GhG(z) 96)
RET) 1+ D@6 5@ [, dur

is used for the frequency response of a digital control system represented
by Fig. 2. 1It should be noted that, in light of the concept developed

in Appendix D, there does not exist a closed-form expression of the fre-
quency response of a digital control system. It is neither represented

by (96), nor is it represented by

-juT
joT, 1 - ¢
D t————————
Y(jw) . ) e G(jw) on
R(3w) 1+ D(eJ“’T)chG(ej“’T)

Example 1. The end result given in (74) or (76) is computationally com-
plicated. It will be demonstrated through simple examples first. Refer-
ring to Fig. 1 and Fig. 2, let the plant and the controller be

G(s) = 17 (98)
24
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and

HORES (99)

The coefficients in the state variable model are
A=[-1]] b =1(1] ¢ = [1] d =0 (100)
A, =01 b =M1} e =(21 d =1 (101)

We choose Q = 1, Qm = [1 0] and B = 0. The sampling period is chosen
to be relatively large because the system is a slow one. Otherwise,
conversion to digital control would not have been a problem. We shall

consider the cases of T = 0.5 sec., T = 1 sec. and T = 2 sec.
Case 1. T = 0.5 sec.
Implementation of (76) on the computer program gives

o 1.1017(z - 0.3682)(z + 0.3078) (= - 0.6065)(z + 4.1231)
(z - 1)(z + 0.2769)(z - 0.5399) (z + 3.8149)

D(z) (102)

Since the closed~loop system is stable (integral-squared error with re-
spect to a stable model is minimized) , the pole and zero of (102) out-
side the unit circle should not be implemented. Since the performance

of the digital control system should match its continuous model only at
low frequencies, the controller transfer function of (102) may be approx-
imated by setting z = 1 in the factors (z + 4.1231) and (z + 3.8149).
Thus

D(z) = 1:1722(z - 0.3682)(z + 0.3078) (z = 0.6065)
z (z - 1)(z + 0.2769)(z - 0.5399)

(103)

For the purpose of comparison, the controller Gc(s) is discretized by

prewarped Tustin transformation (substituting s by % : ; i and 2 by

% X 2 respectively, in Gc(s)):
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1.5463(z - 0.2934)

Dt(z) - pa— (104)
If Gc(s) is discretized by impulse invariant transformation, then
3z - 1
Di(z) > - 1 (105)
Case 2. T =1 sec.
Implementing (76) on the computer program gives
D(z) = 1.16415(z - 0.3679)(z + 0.3405)(z - 0.1362)(z + 4.3678) (106)
(z = 1)(z - 0.2384)(z + 0.2978)(z + 4.0066)

Discounting the pole and zero outside the unit circle by setting z = 1

in the corresponding factors gives the stable controller as

- 1:248(z - 0.3679)(z + 0.3405)(z ~ 0.1362)

D(2) (z - 1)(z ~ 0.2384) (z + 0.2979) (107)
The prewarped Tustin transformation and impulse invariant transformation H
of Gc(s) at T = 1 are given by, respectively,
- 2.5574(z + 0.218)
D, (z) > 1 (108)
3z - 1
Di(z) 2 — 1 (109)
Cagse 3. T = 2 sec.
D(z) = 1.2145944(z - 0.1353)(z + 0.2804)(z - 0.0065)(z + 4.7494) (110)
(z - 1)(z + 0.2701)(z - 0.0221)(z + 4.6059)
Discounting the unstable pole and zero gives:
o 1.2656(z - 0.1353)(z + 0.2804)(z ~ 0.0065)
D(2) (z - 1)(z + 0.2701)(z - 0.0221) (111)
{
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The prewarped Tustin transformation and impulse invariant transformation

of Gc(s) at T = 2 sec. are, respectively,

- =1.185(z + 2.687)

D, (2) ) (112)
3z -1
Di(z) =51 (113)

The comparison of unit-step responses of the closed-loop systems
using Di(z), Dt(z) and D(z) are shown in Fig. 6 and Fig. 7. The com~
parison for T = 2 is not plotted because the performances of Dt(z) and
Di(z) are too poor. Fig. 8 compares the time responses of the state
trajectory matching design at three different sampling frequencies.

Closed-loop frequency responses are shown in Figs. 9, 10 and 1l1.

Example 2. In this example we use a system that was used in Reference I

{1] in order to compare results with the frequency response matching

method for digitalizing the continuous controller. Referring again to
Fig. 1, let the plant and the continuous controller be
10
G(s) = TG+ D (114)
and s
l+m
Gc(s) = (115)
1+
7.2
respectively. The coefficients in the state-variable model are:
0 1 0
A= b= (11e6)
0 -1 10
c=[ 0] d = [0] (117)
Ac = [=7.2] Ec = (7.2] (118)
Cc = [-2] dc = [3] (119)
27
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We choose
A= Qm = (120)

and consider the cases of T = 0.05, T = 0.15 and T = 0.30. Note that for
T = 0.3, the sampling frequency is only slightly above twice the band-
width of the closed-loop system. For this system, digitalization by
Tustin transformation gives inferior performances both in the time domain
\hnd the frequency domain, and can be found in [15]. Hence, comparison
with Tustin method will not be presented. Performance comparisons will

be made with the frequency response matching method of Reference [1].
Case 1. T = 0.05

Implementing (76) on the computer program gives

o 2.8219(z - 1)(z - 0.9512)(z + 0.2527)(z - 0.8869)
(z - 0.9995)(z - 0.9533)(z + 0.2682)(z - 0.9421)

D(z)

(z - 0.9512)(z - 1.0513) (z + 3.5096)
X (z = 0.6742)(z - 1.0514)(z + 3.7310)

(121)

Simplifying D(z) by cancelling the poles and zeros that are very close
together and discounting the pole and zero outside the unit circle (by

setting z = 1 in those factors) gives the reduced version of D(z) as

D(z) = 2.6898(z - 0.9512)(z + 0.2527)(z - 0.8869)
(z - 0.9421)(z + 0.2682)(z - 0.6742)

(122)

Note that the zero at 0.9512 in D(z) is also a pole of E;E(z), the z-

- =T
transform of 1——85—3- G(s).

An attempt has been made to obtain a digital controller via frequency
response matching method of Reference [1] for comparison. But the

method failed to provide a stable digital control system for T = 0.05.
Case 2. T = 0.15

Implementing (76) on the computer program for T = 0.15 yields
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D(z) = 2.6577(z + 0.2265)(z -~ 0.6977)(z - 0.8607)2
(z - 0.2040) (z+0.2771) (z - 0.8607) (z - 0.8090)

(z - 1)(z - 1.1618)(z + 3.0744)

X (z = 1)(z - 1.1618) (z + 3.7062) (123)
The reduced model of D(z) is
' D(z) = 2:294(z + 0.2265) (z = 0.6977)(z - 0.8607) 126

(z + 0.2771)(z - 0.2040)(z - 0.8090)

In applying the frequency response matching method, one can specify the
order of the digital controller desired. The first and second order

digital controller obtained by the frequency response matching method

are [1},
_ 3.6787(z - 0.6275)
D¢, (2) z + 0.3837 (125)
and
3.96 ~ 3.65z2° % + 0.562°2
sz(z) = - (126)

1+ 0.34z° L = 0.384272

Results of similation shows that while the frequency domain performance of
the second order controller seems to be slightly better than the first
order controller, ratcheting and jittering begin to appear in the time
response of the system using the second order controller. Hence in

order not to overcrowd the graphs, the second order controller is regarded
as undesirable and not used in the performance comparison, and higher
order controllers by the frequency response matching method are not

sought,
Case 3. T = 0.30

The transfer function of the digital controller (Eq. (76)) is found
to be
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2.0175(z + 0.1958)(z - 0.4865)(z - 0.7394)
(z + 0.1099)(z + 0.3678)(z - 0.6012)

D(z) =

(z - 0.7423)(z - 1)(z - 1.3499)(z + 2.4504)

X (2 = 0.7614)(z = D) (z = 1.3499) (z + 3.5534) (127)
The reduced model of D(z) is
b(zy = 1:5288(z + 0.1958) (z - 0.4865)(z = 0.7394) 28)

(z + 0.1099)(z + 0.3678)(z - 0.6012)

For T = 0.30, the frequency response method fails to produce stable

digital controller again.

The unit-step responses at the output of the state trajectory
matching design, the continuous model and the system obtained by fre-
quency respoﬁse matching method (first-order controller only) for T =
0.15 are compared in Fig. 12. Fig. 13 compares the squared errors of
the time-responses of the state trajectory matching design with the fre-
quency response matching design using the continuous model as the ideal
response. The time responses of the second state variable ¥ of the two
designs at T = 0.15 are shown in Fig. 1l4. The squared errors are shown
in Fig. 15. Comparisons of time domain performances of the state trajec-
tory matching design for different sampling frequencies are made in
Fig. 16 and Fig. 17. The frequency response comparisons are made in
Fig. 18 and Fig. 19.

It should be noted that, although a first glance of Fig. 12 may
give the impression that the frequency matching method and the state-
trajectory matching method both give about the same time-domain per-
formances, Fig. 13 shows that the state-trajectory matching gives a
much better design. Fig. 14 and Fig. 15 show that the state matching
method yields much better step response in the other state variable too.
Although the frequency matching method seems to yield a frequency re-
sponse that matches the frequency response of the continuous model better
at the higher frequency range than that of the state matching design
(Fig. 19), Appendix D suggests that the close matching of frequency re-

sponses between a discrete time system and a continuous system at the
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higher frequency range is not only meaningless, but also undesirable if
the discrete time system is actually a digitally controlled continuous

system.
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SECTION VI

VERIFICATION OF THE OPTIMAL CONTROL SEQUENCE
VIA THE DISCRETE MAXIMUM PRINCIPLE

It has been shown in Section III that the extended maximum prin-
ciple offers an efficient way to derive the optimal control sequence for
a sampled-data system. The extended maximum principle, though powerful
in this and many other applications [5-9] has not been widely used in the
tectinical community. In many cases where the extended maximum principle
may be used, an equivalent discrete performance index is derived and

the discrete maximum principle is used instead [12-14].

It will be shown in this Section that the optimal control sequence
of Eq. (42) may be derived by using the discrete maximum principle but

a more cumbersome procedure is involved.

The performance index (5) may be written as

g 1 N1 (DT
J= w2z t [x' (£)(t) - 2x' (£)Qx, () + x](t)Qx (t)
k=0 KT
+ Bul(t) - 28u(t)u_(t) + Bui(t)]dt ' (129)

Since u(t) is the output of a zero-order-hold, substituting (10), (28),
(30) into (129) (except for the term zé(t)an(t)) gives:

- N-1
lim 1 , -
I e 2 kfo{i (kT) [Q(T)x(KT) + 2M(T)bu(kT)

zdm('r)xm(k'r) - M (Db al + 8 (T)u? (kT)

- (k+1)T
- 2u(kT) [b'M_(T)x_ (KT) + 8 (T)a + 8 k{ u (£)de)
!(k+1)1: I(k-l-l)T )
+ x (£)Qx_(t) + B u_(t)dt}
KT | kT n
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where

. T

UT) = [ ¢'(r)Qe(r)de (131)
0
T 8

M(T) = [ @'(t)Qd (t)de (132)
0

. T o s

B(T) =BT +b' [ ¢° (£)Qe°(t)ae (133)

0

N T

Q, (1) = (f) o' (t)Q ¢ (t)dt (134)
T s

M (T) ={) o' (t)Q & (t)dt (135)

- T o

M_(T) =£ o ()Q ¢, (t)de (136)

(T) = b’ fT ?°' 03 (t)d 137
Bp(M = b ! (t)Q ¢ (t)deb (137)

The discrete time system to be optimized is described by (47), which is

repeated here for convenience:

x[(k + 1)T] = #(T)x(KT) + ¢°(T)bu(kT) (138)

In the formulation of discrete maximum principle, the Hamiltonian is
given by [12]) (for the sake of notational brevity, the sampling period
T is dropped in the argument of the discrete-time functions):

H(K) = HG(k), p(k + 1), u(k))
= p'(k + 1) [0(D)x(k) + ¢*(Dbu(k)]
+2 %' (0 1AMz + MMbuk) - 2 (Mx_(k)

- M (Db al + 3 8D () - u(k) p'M (Dx_ (k)
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(b+1)T 1 (k+1)T
+8 (Ta+8 k{‘ u (e)de) + 3 f

> gl xa(t)Qxa(t)dt

2

(k+1)T
1 2
+>8 [ u‘(t)de
2 KT m

(139)
The difference equation for the adjoint vector is

o 9H(K)
p(k) 3% (k)

= UMW) + MDpudk) - Qx_ (k)
- Mm('r)gma + ¢'(T)p(k + 1)

(140)
The coupling equation, or the condition of optimality is given by

BW(K) _ o
3u(k)

(141)
Substituting (139) into (141) gives

P’ (k + 1)85(DDb + x' (KM(T)b + B(T)u(k)

- (k+1)T
- b'™M (Dx (T) - 8 (Ta - 8 k{ u (t)dt = 0 (142)

Solving the above equation for u(k) yields the optimal control sequence:

ulk) = —2—

~

[b'M_(T)x_(k) = b'™M" (T)x(k) + B (Da
8(T) "' n

o (kH1)T

-b'¢ (Dpk+1)+8 [ u, (t)de]
kT
If it is recognized that

o'(t) = e T my(-m) = (7t
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then p(k + 1) may be obtained from (140) as

p(k + 1) = y(T) [p(k) - Q(T)x(K) - M(T)bu(k)
+ 6m(r):_:m(k) + M (D)} _a) (145)

Also, in view of Egqs. (22), (29) and (31),

(k+1)T - s — ss
g um(t)dt = chm(T)zm(k) + cmwm (T)bma + dmaT (146)

Substituting (145) and (146) into (143) and solving for u(k) give the

explicit expression of the optimal control sequence u(k) as

u(k) = = L {00 (T)¥(T)p(k)

B(T) ~ b6 (T)Y(TIM(T)D
+ =BT + b'e% (DDA Ix(K)

+ M M) + 6o 03(D) - 2'0° (DUMQ (D]x (1)

+ 18 (T) + B2 0°%(D)b_+ 84T - yw»s'(r)w(-r)um(-r)pm Ja) (167)

It remains to be shown that the right-hand side of (147) is equal to the
right-hand side of (42). First, some preparation is in order. It is
seen that, in view of (132) and (144)

T «
M'(T) = £ [ w(-2)drqe(r)dr
0

T =
= [ [ v(x - 1)dxQé(t)dt
0 0

T T
= [ [ ¥(x - 1)Q2(r)drdx (148)
0 x
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Note that a change of variables and a change of order of integrations are
involved in obtaining the last expression in (148). Furthermore, it is
seen from (38) and (39) that

T x
Fi(T) = [ [ ¢(x - ©)Qe(r)drdx (149)
00

Thus

, T T
Fs(T) + M'(T) = f é P(x - 1)Qd(r)drdx
0

T

T
= [ y(x - T) (T - 1)Q¢(r)drdx
0 0

T
= [ Y(-2)F(T)dA
0

= 0% (T)F(T) (150)

Therefore

FS(T) = —M'(T) + 0% (T)F(T) (151)

Now changing the order of integration in the first expression of M'(T) in
(148), with the aid of (144) and (132), gives

T =t
M'(T) = [ [ w(-A)dxQe(t)dt
0

o

T T
= [ [ ¥(-2)Qo(t)drdAr
0

T

T
= [ $(-2)Qf #(r)drdr
0 A

T T T A
= [ $(-2)Q [ #(t)drdr - [ ¥(-A)Q [ @(r)drdA
0 0 0 0




t T
= 9% (1)Qe%(T) - [ ¥(-1)Qe%(A)dr
0

= 0% (1)Qe%(T) - M(T)
Substituting (152) into (151) gives
FS(T) = -¢% (T)Q%(T) + 0% (T)F(T) + M(T)

But since Y(T) is a matrix exponential, M(T) may be expressed in the
following form, with the aid of the theorem given in Appendix C:

T
M(T) = [ &' (t)Qe°(t)dt
0

T t
= p(-T) [ (T - £)Q [ #(A)dAdt
0 0

T t
= 9(-T) [ [ ¥(t - 1)Qe(r)drdt
00

T
= $(-T) [ F(t)dt = $(-T)F°(T)
0

Hence, in view of (144) and (154), F3(T) of (153) may be written as:
FO(T) = 0% (T)Qe%(T) + ¢° (TIF(T) + ¢' (T)FS(T)

Integrating both sides of (155) from 0 to T gives

T '
FP5(T) = - [ 0% (£)Qe®(t)de + 0% (T)F%(T)
0

Now it can be shown that the control sequence given in (147) is
identical to that given in (42). With the aid of (133), (154) and (156) the

(152)

(153)

(154)

(155)

(156)




denominator in the right-hand side of (147) may be reduced as follows:

B(T) - b'e® (T)V(TIM(T)b,

T [} L
BT + kflg 0% (£)Qe®(t)dt ~ ¢° (TI(TIM(T)Ib

T,
BT + b'1f 0° (£)Qe®(t)dt - ¢° (DHF*(DIDb
0

8T - b'F**(T)b as?)

Because Y(T) is a matrix exponential, the coefficient of p(kT) in (147) may

be reduced as follows:

' T T
0% (T)¥(T) = é P(-t)dey(T) = [ ¥(T - t)de
0

. ‘
= [ $(A)dr = y3(T) (158)
0

The coefficient of x(k) may be reduced as follows:
a
=M (T) + ¢ (T)W(TIQT)

. T
= ~M'(T) + ¢° (T)¥(T) £ ¥(~t)Qa(t)dt

- M'(T) + 0% (TYF(T) = F5(T) (159)

vhere (131), (38) and (151) have been used. Similarly the coefficient of
l‘m(k) in (147) 1s shown to be

yﬁm('r) + squ»:(r) - g'os'(r)w(r)im('r)

— g 18
= chém('l‘) -b Fm(T)




For the coefficient of a in (147), it is seen that
sl
Bm(T) -b'¢ (T)W(T)Mm(T)hm

T g' s s' s

=b'[f @ (£)Qo (t)dt - &~ (T)F (Db
0
ss

= -p'F O (Db, (161)

Where formulas (135), (40), (137) and an equivalent of (156) for F:S(T)

have been used.

Finally, the following relations (which have been found in the deriva-
tions of (154) - (161))

$(MAUT) = F(D) (162)
V(DM(T) = F2(T) (163)
DM = B (D (164)
$(TIM (T) = Fo(T) - . (165)

lead to the fact that the solution p(k) of (145) is the negative of the
solution of the difference equation given by (49). This fact and Egs.
(157) ~ (161) imply that the optimal control sequence given in (147) by

the discrete maximum principle is identical to the optimal control sequence
given in (42) by the extended maximum principle. It is also clear that

the derivation of (42) 1is much simpler than the derivation of (147). The

extended maximum principle even yields more concise expressions.
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SECTION VII

CONCLUSIONS AND RECOMMENDATIONS

The extended maximum principle has been applied to the problem of
designing a digital controller that drives the state trajectory of a
continuous plant in an output feedback system to follow its continuous
model as closely as possible. Closed form expressions of the optimal
digital controller have been obtained, as given by Equations (74), (76),
(90) and (95). The result has been verified by a derivation via the
widely used discrete maximum principle, which would entail a far more

cumbersome procedure to obtain the same result.

The optimal digital controller gives rise to a closed-loop system
(Fig. 2 or Fig. 4) that has a discrete transfer function equal to
(Eq. (82) repeated here):

b'H (z)b  __
Y(z) . —_m = G.G(2) (166)

R(z) b'H(Z)b

if B8 = 0 (integral squared error of the control signal is not weighted in
the performance index). A similar expression may be derived for B # 0.
The formulas for the digital controller, given by (74), (76), (90) and
(95), are rather difficult to compute. Numerical computations of these
equations always result in poles and zeros in the unstable region that
should not be implemented. Owing to the amount of computations involved,
it i{s not clear whether the unstable poles and zeros in the digital con-
troller should be identical to one another and thus be cancelled, or are
introduced by z-transforming the control and error sequences. More study
is needed in this direction.

For the lower order systems (second and third order systems), this
method of digital controller design yields excellent results, even though
the sampling frequencies are relatively low. The digital controllers
designed by the present method compares favorably with those designed by
the frequency matching method, and are far superior to those obtained by
the conventional Tustin or impulse invariant transformatiomns.
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Attempts have also been made to compute the digital controller of
Eq. (95) for a sixth order model of the inner locop of the longitudinal
control of YF-16 fighter aircraft at 30,000 ft altitude and Mach 0.6.
It is found that (95) is not well conditioned for numerical computation
for higher order systems in the sense that it involves ratios of differ-
ences between polynomials which are approximately equal to one another.
This and the fact that a large amount of multiplication and integration
are required in computing H(z) and Hm(z) make it impossible to obtain a
valid expression of the digital controller by way of the computer programs
available to or developed in this project. Another diffiéulty involved
in computing (95) is the high order in the resulting transfer function.
The ill-conditionedness of the digital controller formulas may perhaps

be circumvented by transforming the z-plane formulas into the w'-plane, i.e.,

(167)

SIS

The w'~plane concept was initiated by Whitbeck [16]. W'-transformation
has the advantage over the w transformation in that when T + 0, w' + s.
It may also be easier to find reduced-order models of the digital con-
troller in the w'-plane in order for this method to apply to practical

higher order systems.

Equation (166) represent the ideal closed-loop transfer function
when the optimal digital controller is employed. It represents the best
closed-loop digital control system that can be achieved if the digital

system is required to model after the continuous system.

The numerical computation of the optimal digital controller transfer
function of Eqs. (74), (76), (90) and (95) involves integrations and
double integrations of matrix exponentials and of convolutions of matrix
exponentials. We used Romberg's algorithm (17] on an IBM 370 computer
with extended precision. For a sixth order system, the CPU time required
to compute a set of coefficients for (76) is 0.25646 hours for T = 0.04,
and 0.74129 hours for T = 0.1. Therefore, a more efficient computer program




**"!!!!!!====l----........,___..‘

such as one that performs analytic integration by giving % eat as the

integration of €2t for matrix functions needs to be developed. The
analytic integration program would not only cut down the CPU time, but
also improves precision since numerical values are substituted at the last
stage. It is useful not only for computing the formulas of the digital
controller developed in this project, but also in discretizing a contin-
uous control system or in applying the discrete maximum principle to
sampled-data systems,
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APPENDIX A

THE OVERALL STATE EQUATIONS OF THE CONTINUOUS MODEL

The feedback structure in Fig. 1 gives
e () = r(t) -y (t) (A-1)

Eliminating em(t) and ym(t) among Eqs. (A-1), (2) and (4) and solving

for um(t) gives

-d ¢ c d

[ C
R x,(0) + T+dd_ x () + T+dd_ r(t) (A-2)

Eliminating um(t) and ym(t) among Eqs. (A-1), (2) and (4) and solving

for em(t) gives

- —dz
x (t) + —= x (t) +

e (t) = —S— 1
m 1+dd =a 1+dd —=c 14dd
Cc Cc [

r(t) (A-3)

Substituting (A-2) into (1) and (A-3) into (3) yields, respectively,

gch be, bd

x,(0) = ( - 1+ddc>3‘-a(t) + T+dd_ x (t) + T+dd_ r(t) (A-4)
-b ¢ b de_ 5

() = T+dd_ X (t) + (Ac - 1+ddc>-’5c(t) + T+ad_ r(t) (a-5)
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APPENDIX B

SOLUTIONS OF THE STATE AND ADJOINT EQUATIONS

The solution p(t) of Eq. (14), in terms of x(t) and Ea(t), is
given by

t
p(t) = y(t-kD)p(kT) + [ y(t-1)QLx(T) - X (1)]dr (B-1)
kT

for kT < t < kT, where

P (t-kT) = g~A" (t-kT) (B-2)
With the aid of Eq. (28), Eq. (B-1l) can be written as
t
p(t) = ¥(t-kDp(kT) + [ $(e-1)Qx(1)dr
kT
J_t:
- v(t-1)Q x (t)dr (B-3)
g X
The vectors gm(t) and x(t) are solutions of Eq. (21) and Eq. (7),
respectively. They are given by, for kT < t < (k+1)T,
x () = ¢_(t-kD)x (kT) + Q:(t:-kT)_lgm a (B-4)
x(t) = &(t-kT)x(KT) + ¢°(t-kT)bu(kT) (B-5)
where
Ah(t-kT)
Om(t-kT) = ¢ (B-6)
s It It-kT
¢ (t=-kT) = ¢ (t-t)dt = ¢ (t)dr (B~7)
m Kt © 0 m
p(t-kr) = eA(67KT) (8-8)
d
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s t t~kT
¢ (t~kT) = [ o(t-t)dt = [  &(1)dr (8-9)
kT 0

Now substituting (B-4) and (B-5) into (B-3) and invoking (B-7) and
(B-9) gives, for kT < t < (k+1)T,

t
p(t) = p(t-kT)p(kT) + [ ¢(t-1)Qo(r-kT)dtx(kT)
kT

t T
+ [ v(t-1)Q [ ¢(t-A)drdtbu(kT) :
KT kT |

t
- f V(e-1)Q ¢ (1-kT)dtx _(KT)
kT
It IT .
- p(t-1) ¢ (t=-A)dAdtb a (B-10)
KT % kT © =
In view of the identities derived in Appendix C, a new set of notations
may be used for the integrals which appear in the above equation, for

the sake of clarity:
p(t) = Y(t-kT)p(KT) + F(t-kT)x(kT) + F®(t-KT)bu(kT)
- F, (t~kD)x_(KkT) - F:(t-km)bma (B-11)

where

t
F(t-kT) = [ y(t-1)Q@(r-kT)dt
KT

t-kT
= [ y(t-kT-1)Qd(1)dr
0
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t T
[ $(t-1)Q [ e(r-A)drdt
kT kT

F° (t-kT)

t-kT T
/ f $(1-2)Qe(A)drdr
0 0

t-kT
f F(t)drt (B-13)
0

t
F_(t-kT) = k£ ¥(t-1)Q 8 (t-kT)dt

t-kT
0[ ¥ (e-kT-1)Q ¢_(7)dr (B-14)

t T
Fo(t-kT) = [ ¥(t-1)Q_ [ ¢ (r-A)drdt
n kT % kT *

t-kT
/ [ w(-2)Q 0 (M)drdr
0 0

t-kT
=[ F (0)dr (B-15)
0
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APPEN!". 5 C

FORMULAS OF FINITE MULTIPLE INTEGRALS

THEOREM: The convolution between f(t) and the area under g(t), if it

exists, is equal to the area under the convolution between f(t) and
g(t).

T T T ¢t
[ £(T-1) [ g()dadr = [ [ £(t~1)g(7)drdt (c-1)
0 0 0 0

Proof,.

“'r

Fig. C~1. Area of integration in (t,t) plane.

In view of Fig. C-1l, interchanging the order of integration for the
integral in the right-hand side of Eq. (C-1) gives

T ¢t T T
J | f(t-v)g(r)drdt = [ [ f(t-1)g(r)drdr (c-2)
0 0 0t
i
i
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Substituting t' for t-t and dt' for dt (regarding t as a constant in the
partial integration with respect to t) in Eq. (C-2), we obtain, after
changing the integration limits accordingly,

T T T T-t
[ [ £(t-1)g(r)dtdr = [ | £(")dt'g(r)dr (c-3)
0 = 0 0

In a similar fashion, interchanging the order of integration in the
left-hand side of Eq. (C-1) gives

T T T T
[ £(1-1) [ g(\)drdr = [ [ £(T-t)g(A)drd) (c-4)
0 0 0

Substituting t for T-t and dt for -dr and changing the integration limits
accordingly in the right-hand side of Eq. (C-4) gives

T T T 0
[ [ f£(r-vgdrdr = [ [ (-1)£(t)dtg(r)dA (c-5)
0 A . 0 T-A

Comparison of the Eq. (C-3) with Eq. (C-5) completes the proof.

The following is a list of formulas that are used in the deriva-
tions in Appendix B. The proof involves changes of variables or

changes of order of integrations, and is hence omitted.

t t-kT
Formula 1. [ f(t=t)dt = [ f(r)dt
kT 0
t t-kT
Formula 2. I f(t-t)g(t-kT)dt = f f(t-kT-1)g(1)dT
kT 0
t T t-kT T
Formula 3. [ £(t=1) [ g(z=A)dAdt = [ £(t-kT-1) [ 8(A)dAdt
kT kT 0 0
t T t-kT 1
Formula 4. f f(t-1) f g(1-2A)didt = f f f(r=2)g(A)dAdt
kT kT 0 0
(k+1)T ¢t T ¢
Formula 5. f | £(t=-1)g(t-kT)drdt = [ [ £(t~-t)g(t)drdt
kT kT 0 0
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Formula 6.

Formula 7.

Formula 8.

Formula 9.

Formula 10.

t T t T
[ £(t-1)[ g(r-2)dadt = [ £(t-7)[ g(r)drdr
0 0 0 0

t T t T
[ £(t-t)f g(\)drdt = [ [ £(x-2)g(A)dAdr

0 0 0

T O

t T T
[ £(t-1)f g(r-2)drdr = [ [ £(x=2)g(A)dAdt
0 0 0 0

(k+1)T t T
[ £(t=1) [ g(x=A)dAdrdt
kT KT KT

T ¢t T
= [ [ £(t~1)[ g(r)drdrde
0 0o 0

(k+1)T ¢t T
[ £(t-1) [ g(r-2)drdrdt
kT KT kT

T t <
= [ [ [ £(x-))g(r)drdrdt
0 0 0
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SUBALIASES IN THE FREQUENCY RESPONSE

OF DIGITALLY CONTROLLED SYSTEMS

Hsi-Han Yeh*
University of Kentucky, Lexington, Ky.
and
Richard F. Whitbeck**
Systems Technology, Inc., Hawthorne, Calif.

I. INTRODUCTION

In a recent paper, Whitbeck, Didaleusky and Hofmann [l1] extended
the concept of the tradiational "sampled spectrum" frequency response
for discretely excited continuous systems. When a sinusoidal wave is

input to a discretely excited continuous system, N sine waves at dif-

ferent alias frequencies are required to match the continuous steady-
state time response at the sampling instants and at N-1 equally spaced
intersamsle points. In the gpecial case of N=1, this reduces to the
traditional concept of the sampled-spectrum frequency response for
sampled-data systems. Letting N approach infinity gives an infinite
spectrum for the continuous steady-state response of a discretely
excited continuous system. This theory enables one to write an exact
expression of the time response sampled at any rate that is ar integer
multiple of the sampling rate of the system. The practical value of

knowing such an expression of the output is evident,

*Associate Professor, Department of Electrical Engineering

*principal Research Engineer
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However, in the derivation of Whitbeck, Didaleusky and Hofmann
[1], only positive aliases of the input frequency are included in the
representation of the sampled continuous output. Whereas the result is
correct for the case where N is finite, the 1imit case where N
approaches infinity is in error and it contains only half of the
spectral components necessary for an asymptotic representation of the
continuous output. In this paper, a new derivation which includes
subaliases in the spectral representation of the sampled output will be
presented. It will be shown that, as the output sampling rate N
approaches infinity, the infinite spectrum of the continuous output
contains all aliases and subaliases of the input frequepcy. Also pre-~
sented will be a direct derivation of the infinite spectrum of the
continuous output, without invoking the expression of fhe sampled

steady-state response. This confirms the correct representation of the

Y

continuous steady~state output of discretely excited continuous systems
in response to a single sinusoidal input. This derivation brings forth
a unified concept of frequency response which enables one to write the
spectral representation of the output of a discretely excited continuous

system on the basis of the frequency response of the continuous system.

I1. FREQUENCY COMPONENTS IN THE SAMPLED OUTPUT

Consider the system of Fig. 1 where G(s) represents an arbitrary
transfer function and M(s) represents an arbitrary data hold. Let the

Jbe and the output be sampled

input be a unit amplitude exponential €
with period T/N. Using multirate sampling results (See Appendix of

{1]) yields
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T/N
cUN L [GMRT] - (@ T

N

/N 2 esT/N

T &
- (M) (z= e (¢b)
where the notation follows Whitbeck, Didaleusky and Hofmann {1]. The
superscript denotes the period of sampling operation. In the time

domain, a sampled function [r(t)]T or rT is defined by

1T & Y r(mét-nT) = r(t) } &(t-aT) 2)

n‘-@ NN

In the s-domain, a sampled function RT is defined by

’

Ri(s) 2§ r@e™T -2 R(s+j-2Tm') (3
=0 Qoo
and in 2-domain,
R'(2) & &T(a)| (4)
€ =z

But in the presence of a higher rate sampler with period T/N, as in

sT/N a

this paper, it is desirable to use z=¢ nd

RizM & rY(s) (5)

EST/N+z

Hence it is simpler to think of frequency response of discretely excited
continuous systems in terms of s rather than 2. Where no confusion may
arise, the variables s and z may be omitted to give versatility to the
notation., For the sake of notational brevity, in the following devel-
opment G(s8)M(s) wili be written as GM(s), for occasions where s needs to

be substituted by a string of notations,
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The steady-state component in the sampled output is of interest.

In taking the partial fraction expansion of the right-hand side of (1),

one may note that the N principal roots of z -sij are
bT bT-2 bT+2 bT-4
LS j___". j.__"_ j._".'.
N N N N
€ . € . € . € s oo

Hence the partial fraction expansion of %CT/N(z) may be written as

l T/N n2 A +jB
2C @ = nj(u Tn/N
n=n) n

zZ-€
T/N
+ [terms due to modes of (GM)' ] (6)
where
2m
u»n b + T
-1 =N
n; = =81 ot
if N=odd if N=even
1 N
nz E(N-l) nz 'E -1
and
T/N _N-1
A +33 = 8Dz - LoV
SRR VIR N o 2/
dz Jw T/N n
n z=g
z=€
- s ™" ¢
s-jwn

The steady-state response to ejbt can be written by inspection of (6) as
T/N
T/N v2 Jugt !
[egg(®1™"" =} T (A +3B)e (8
) n=nj
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Since the system of Fig., 1 is linear the response to the imaginary part
of ejbt is the imaginary part of the response to ejbt. Hence the

steady-state response to sinbt is

n, T/N
[css(t)]T/N - n=)_:_'“I(An sin wt + B coswnt)] (9)
where An and Bn are determined by (7)., Note the simplicity of the
derivation as compared to that of Reference [l1]. The difference between
(9) and the corresponding expression (Eq. (11) of Reference [1]) is
that, in the right-hand side of (9), the N spectral components are
selected alternately between negative (subalias) and positive aliases,
while only positive aliases are used in Eq. (11) of Reférence [11. 1t
is worth noting that while both results are correct for the representa~
tion of sampled steady-state output, difficulty arises (and was over-
looked) in considering the limit case of N+« in Eq. (11) of Reference
(1], By letting N+« in (9), this difficulty is circumvented. The
following development demonstrates this point. The correct expression
resulting from taking N+« in (9) is presented first.

Letting N+« in (9) gives

css(t) = Z (An sinwnt + Bﬂ coswnt)

nﬂ—@
where, on account of (7),

i
T

1im %(cm T/N

A +B =
n n .

s= jwn

- 2un ] ou(s+ 33N

N+ kswcn

s= jwn
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N N
As long as -55n1$n$n2<5

the infinite sum in the right-hand side of (11) since GM(s) is always

and N+ », only the k=0 term contributes to

a low-pass filter., Hence, as N+,
A +34B = E6M(ju) (12)
n n T n

However, the above limit case is not true if n=N-i, for finite integer

i. 1In that case,

2nkN
T

)

=10
s;jn

lim § GM(s -}

N+ k=—wx

=1L

An + jBn =

27 (n-kN)

l [--]
= 7 lim Y oM[j(b + )1

N k=—w .

21:1) _ ,Zn(k-'-l)N]
T J T

lim § oM{j(b -

(13)
N+ k= "

=

" Now as N+=, only the k=1 term contributes to the infinite sum in the
right-hand side of (13) since GM(s) is always a low-pass filter. Thus

for n=N~-i, N+, finite 1,

1 2nd
A + 3B ’ EGMU(b - —T—)l (14)

which is a subalias component, is not negligible, and is not represented
by (12). Since the summation in Eq. (11) of Reference [1] runs between
n=0 and n =N-1, letting N+« results in an An+jBn which cannot be
‘ represented by (12), which is Eq. (18) of Reference [1].
A numerical example demonstrating the representation of the
spectral components of the continuous output and the sampled output on

a Bode-plot and an even-scaled frequency response plot, respectively,
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has been given in Reference [1]. The modification and correction made
in this paper requires the inclusion of subaliases or negative aliases
on the frequency response plots in accordance with (8) and (10). To
avoid duplication, numerical examples will not be given here. The
reader is urged to apply this modification to the example given in

Reference [1].

III. DIRECT DERIVATION OF THE FREQUENCY SPECTRUM OF THE CONTINUCUS

.

OUTPUT

In the above development, the continuous output is treated as a
limit case of sampled output with an arbitrarily large sampling fre-
quency, and the infinite frequency spectrum of the continuous output is
given by (10) with the spectral components An+jBn given by (12). Iq
this section, it will be shown that the frequency spectrum of the co;-
tinuous output of a discretely excited continuous system can also be
derived directly without invoking the sampled output. Thus it confirms
the result of the previous section.,

Again consider the system of Fig. 1, where

C(s) = G(s)M(s)R'(s) (15)

Let

g (0 & Lhaom(s)] (16)

Let the input be ejbt, with t extending from -« to », Then the steady-

state response of the system may be written as

T
e (D) = [cv¢] . g (1) an
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where the % denotes convolution, and

T hd . ©
[sjbt] = bt 1 6(tnT) = %ert Y ¢ T (18)

= =0 nN=e=

The last identity can be found in textbooks on Fourier series and
Fourier transform [2]. Fourier transformation of (18) gives
[ jbt T] 21 o 2m ‘
F (s ) = = J 8(u-b - (19)

T

n=—w
Fourier transform of (17) is

C o) = & T sw-b - EHeEwuGL 20

n'—'—@

since gm(t) is a causal function. Now the steady-state output is

obtained by inverse transforming (20):

2tn
o b+—")t

1 2™ 3( T
e (t) = T n}_f“[j(b +5)1 e (21)

Since wn=b+£;£, substituting (12) into (21) gives

o jwnt
cgg(t) = )) (A +3B) € (22)
nM

as the steady-~state response to ejbt. Note that (22) is the limit case

of (8) when N+», Again, by virtue of the linearity of the system,
(22) implies that the steady-~state response to sin bt is given by (10),
with An+jBn given by (12)., In summary, the analogy between the fre~
quency response of a continuous system and that of a discretely excited

continuous system is readily demonstrated by comparing Fig., 2 and Fig. 3.
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Note especially that if all the variubles are represented in the
s~domain, a unified concept of frequency response may be readily applied

to both continuously excited and discretely excited continuous systems.

IV. CLOSED-LOOP DIGITAL CONTROL SYSTEMS

It is readily seen that if, in Fig. 2,

-1
F(s) = GM[l +c'1f(c2cM)T] G

T
2

1 (23)
then Fig. 2 represents the closed-loop system of Fig. 4. Since
W, = b-f--g%‘l and the Laplace transform of a sampled function is periodic
in s with period j%;, substituting s=jwn into F(s) gives

. T T T
F(jw ) = GM(jw )|l + G;(G,GM) G (24)
n n 172 1 s=ib “

The concept of frequency response set forth in Fig. 2 implies that, for
the continuous output of the closed-loop system of Fig. &,
1 T 7T
A+ 3B = EOM(ju) [1 + G1 (G, QM) ] ¢l (25)
s=jb
For the sampled output with sampling period T/N, the spectral components

are given by substituting the right-hand side of (23) for GM in (7).

Thus
-1 T/N
- 1 T T] T
A+ jBn N GM[l + Gl(GZGM) Gl (26)
s-jwn

Applying multirate sampling theory (Appendix of [l]) and property of

periodicity to (26) gives




. m~ﬂ*;:E____;;1!I‘

-1
1 T/N T T T
A+ iB = |=(GM) 1 + G,(G,GM) G 27
n n [F ]s=jmn {I 172 ] 1 s=b

Thus the spectral representation of a closed-loop discretely excited
continuous system is readily obtained via the unified concept of fre-

quency response,

V. CONCLUSIONS

This paper corrects the mistake made in a previous paper and
further advances the concept of frequency response of discretely excited

continuous systems. If a continuous system has transfer function F(s)

jbt

and its input is R(s), then its steady-state response to r(t)=¢ is

css(t)=F(jb)ert (Fig. 3). If R(s) is sampled and then input into F(s),

then the input to the continuous system F(s) is (Fig. 2)

R (s) = % ) R(s+j—2%1'.-‘l) (28)

n=.&

and the steady-state response of the discretely excited system to

r(t)==sjbt is
2m
- 1o+ 2D
co® = = I P+ Ay T (29)

NS

The analogy between the frequency response of a continuous system and

that of a discretely excited continuous system is interesting in the

sense that it enables one to write the frequency response of the latter

on the basis of what is already known about the former. This unified

concept of frequency response is independent of system configurations,

as F(s) may represent closed-loop as well as open~loop systems.
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—a=  M(s)

Fig. | Discretely Excited Continuous System -
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[19)
R(s)  RUs)=+ 2 R(s+i2F%) cls)
/ l‘\"d) . F(s) -
7
i i a . 2 . 2mn t
1fr()=e® Then Ces(t) =3 F [j(b+ SFN)] IO T )

F
-

n

Fig. 2 Frequency Response of Discretely Excited Continuous
System

R
(s) o Es) C(i’

1f r(t)=e® Then Cgg (1) =F (jb) €l

Fig. 3 Frequency Response of Continuous System




T/N

T/N

G, =

Fig. 4 A Closed-Loop Digital Control System
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